If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2+10x+25)+(x^2-4x+4)=81
We move all terms to the left:
(x^2+10x+25)+(x^2-4x+4)-(81)=0
We get rid of parentheses
x^2+x^2+10x-4x+25+4-81=0
We add all the numbers together, and all the variables
2x^2+6x-52=0
a = 2; b = 6; c = -52;
Δ = b2-4ac
Δ = 62-4·2·(-52)
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{113}}{2*2}=\frac{-6-2\sqrt{113}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{113}}{2*2}=\frac{-6+2\sqrt{113}}{4} $
| 180=43s+101+36s | | (3x-4)(6x-5)(x)=x | | 120x-20x^2=0 | | x+90+2x+3=180 | | 180=32+6u+15+2u-1 | | 6x(3x+4)=x-40 | | -x+191=8 | | 180=45+t+5+3t | | 3x+124=180 | | (x^2+10x+25)+(x^2-4x+4)=9 | | (3x-4)(6x-5)=x | | (2x+5)(x+1)=−1 | | 180=5c+2c+38+c+22 | | 180=33+4w+17+w+10 | | 180=65+8u+15+84 | | 180=x+13+3x+7+4x | | 180=76+3t+19+20t-7 | | 180=50+t+20+t-30 | | 4u^2-85u+441=0 | | 180=9a+a+39+a+20 | | 180=x+22+x-22+x-3 | | X/5x-1=3/16 | | 23+3y=-11y-9 | | X=-6+15y | | 180=80+z-4+z-16 | | (2x-5)/2=(3x-1)/4 | | 29=a-17 | | 180=100+5v+3v | | (X+2)+(x+2)+(x+2)=18 | | 3w/8=21 | | 180=67+3s+38 | | 20x-14=11x+4 |